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A combined numerical and experimental investigation was conducted to study mode selection
in Taylor-vortex #ow (TVF) between coaxial conical cylinders (truncated cones), where the
inner cylinder rotates and the outer one is at rest. Simulations, using a "nite-di!erence method
with simpli"ed marker and cell (SMAC) formulation, con"rmed the same dependence of mode
selection on the acceleration rate b of the inner conical cylinder as observed experimentally.
Di!erent TVF modes were obtained in the Reynolds number (Re) range studied. Three di!erent
modes corresponding to six, seven and eight pairs of steady Taylor vortices were obtained when
the inner conical cylinder rotation speed was increased linearly at di!erent acceleration rates.
The transition diagram obtained by Re-b mapping successfully summarizes the various #ow
states and modes observed. ( 2002 Academic Press
1. INTRODUCTION

SINCE THE PIONEERING WORK of G.I. Taylor (1923), the #ow in the annulus between two
coaxial rotating cylinders has been the subject of deep investigation devoted to the initial
and boundary e!ects on the annular #ow structure (Coles 1955; Andereck et al. 1987).
Research interest in this system has grown along with its di!erent practical applications in
mechanical and chemical engineering (Kataoka 1998). Owing to the variety of the #ow
con"gurations studied and the particularity of the transition from the laminar to the
turbulent state, the Taylor}Couette #ow system is widely considered as a typical model
system of routes towards chaos (Cognet 1984).

Recently, from the point of view of hysteresis, more attention has been given to initial
conditions and to the way to attain steady rotation of the inner cylinder. Lim et al. (1998)
reported a new kind of #ow pattern in the Taylor}Couette system for di!erent acceleration
rates b of the inner cylinder. This state, represented by a #ow con"guration similar to the
Taylor vortex #ow, occurs in the Reynolds number range where the wavy vortex #ow
regime is normally expected. Previously, Burlkhalter & Koschmieder (1974) discovered the
initiation of a Taylor-vortex #ow (TVF) regime at Reynolds numbers higher than the
critical value, Re

c
.

The occurrence of Taylor vortices between two rotating spheres has also been numer-
ically and experimentally investigated (Wimmer 1976; Bonnet & De Roquefort 1976). As
another variant of the Taylor}Couette system, the #ow between two rotating conical
cylinders, was also studied (Wimmer 1995; Noui-Mehidi & Wimmer 1999; Ho!mann
& Busse 1999). As distinct from circular cylinders, the conical cylinders have the advantage
that the Reynolds number changes axially as the radii vary axially also.
889}9746/02/020247#16 $35.00/0 ( 2002 Academic Press
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Early studies on the #ow between conical cylinders (truncated cones) showed the #ow to
be highly sensitive to both geometrical and initial conditions. Wimmer (1995) discussed the
dependence of the three-dimensional basic #ow on the angular velocity, apex angle, axial
position and gap width. The conditions leading to the generation of Taylor vortices were
also investigated. Noui-Mehidi & Bouabdallah (1993) investigated the laminar}turbulent
transition by the use of an electrochemical method and showed that the friction coe$cient
varied axially. Noui-Mehidi & Wimmer (1999) studied the #ow structure observed in the
presence of a free surface. Flow con"gurations supposed to appear only between counter-
rotating cylinders have been observed in the conical system with a free surface, even with the
outer conical cylinder at rest. Based on numerical computations, Hofmann & Busse (1999)
discussed the transition from Taylor-vortex instabilities to Ekman-type instabilities when
the apex angle of the conical cylinders is varied.

The present work focuses on the generation of Taylor vortices and its dependence on the
acceleration rate of the inner conical cylinder rotation. In both numerical and experimental
work, the inner conical cylinder rotation is linearly increased, until the "nal rotational speed
is reached. A transition diagram is drawn by mapping Re versus b to summarize the
di!erent #ow states and modes observed in the Reynolds range 04 Re (1000 and the
acceleration rate range 0)064b41)32 rad/s2.

2. NUMERICAL METHOD

The incompressible Navier}Stokes and continuity equations expressed in cylindrical coor-
dinates with radial (r), azimuthal (h) and axial (z) components of velocity as shown in
Figure 1 are
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Previous #ow visualization observations have shown that the observed steady Taylor
vortices are axisymmetric (Wimmer 1995; Noui-Mehidi & Wimmer 1999). The governing
equations (1)}(4) are presented here in a conservative form, where the derivatives with
respect to h are neglected due to the assumption of axisymmetry. These equations require
the solution for the pressure P and the three components of velocity u, v and w in the
directions r, h and z, respectively. The derivative operators in equations (1)}(4) are
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In this framework, the Reynolds number is given by
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Figure 1. Flow system and notation.
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where R
ih

is the maximum radius of the inner conical cylinder, d the gap width, X the
angular velocity and l the kinematic viscosity.

The boundary conditions on the conical walls cannot be easily expressed in cylindrical
coordinates. This problem can be avoided by adopting the following coordinate-trans-
formation function (Noui-Mehidi et al. 1999):

f:
g"r!z tan a,

m"z.
(8)



Figure 2. Coordinate transformation. Left: physical domain; right: numerical domain.
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This function transforms the physical domain (r, z) to a numerical one (g, m), as shown in
Figure 2. The transformed boundary conditions become constant on the walls.

Replacing the partial derivatives in equations (1)}(4) with the corresponding derivatives
in the (g, m) domain leads to the following system of equations:
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where the derivative operators become
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If the apex angle a is set to zero, the system of equations (9)}(12) reduces to the system for
the classical Taylor}Couette #ow corresponding to equations (1)}(4).

In the transformed numerical domain, the boundary conditions corresponding to the
no-slip conditions at the walls are

g"g
1
, u"w"0, v"1,

g"g
2
, u"v"w"0.

(15)
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The simpli"ed marker and cell (SMAC) formulation developed by Amsden & Harlow
(1970) is employed in the numerical simulation of the generation of vortices. The mo-
mentum and continuity equations are solved using a staggered mesh discretization in space
with equal interval grids in the g and m directions (Fletcher 1991). A "rst-order time-
integration scheme is then applied, with central "nite di!erences for spacial discretization.
A Poisson's equation solver is developed to solve the equation of an auxiliary velocity
potential function / de"ned in equation (16),

u"
L/
Lr

, v"
L/
Lz

. (16)

In the resulting Poisson's equation, the point SOR method is used together with the concept
of the SMAC formulation to directly satisfy the condition of continuity of the potential
function /.

The acceleration of the rotation of the inner conical cylinder was simulated numerically
by changing the rotational boundary condition from zero, until the "nal rotation is reached.
A linear acceleration path is followed with a constant acceleration rate de"ned by (Ohmura
et al. 1994)

b"
*X
*t

. (17)

The solution is integrated forward in time, until the #ow becomes steady for the desired
Reynolds number and acceleration rate. A direct comparison between the simulations and
the experimental observations can be made in terms of the Reynolds number and acceler-
ation rate b.

At present, the apex angle in the experimental apparatus cannot be varied. The depend-
ence of the Reynolds number on the apex angle will therefore be investigated in the next
phase.

3. EXPERIMENTAL CONDITIONS

The experimental set-up, shown in Figure 3, consists of a vertical, rotating inner cone made
of stainless steel with an upper radius R

ih
"42mm and a transparent stationary outer cone

made of Plexiglas with an upper radius R
oh
"50mm. Both conical cylinders have the same

apex angle, /"163, so that the gap width is kept axially constant, d"8mm. At the top of
the #ow system, the radius ratio is then s"R

ih
/R

oh
"0)840. Both top and bottom plates are

"xed to the outer cone. The #uid column height is ¸"125mm, which gives an aspect ratio
C"¸/d"15)62. The working #uid is an aqueous solution of 66 vol% glycerol; 2% of
Kalliroscope AQ1000 is added for #ow visualization. The #uid temperature is measured by
the use of a thermocouple (Copper/Constantan), with an accuracy of 0)13C. The kinematic
viscosity is 14)81 cS at 253C. The visualized #ow structure is recorded with a high-resolution
video camera. Two illumination techniques are utilized: (i) Argon laser sheet illumination
for observing a cross-section of the gap, and (ii) re#ected white light illumination for the
observation of the front view of the #ow system. The inner cone rotation speed is controlled
by a computer program. In the start-up operation, the cylinder rotation is accelerated
linearly, following

X (t)"bt. (18)

until the "nal speed for the speci"ed steady state is reached. The acceleration procedure has
been described by many authors as a quasi-static acceleration of the inner cylinder



Figure 3. Experimental apparatus and arrangement.
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(Andereck et al. 1986). Once the target Reynolds number is set, the inner cone is slowly
accelerated from rest with a constant rate b, until the "nal target rotation is reached. The
visualization recordings of steady-state #ow are done after a time equivalent to over a 100
times the acceleration time, i.e., when the #ow is steady. As stated in Section 1, the
acceleration rate b is varied between 0)06 and 1)32 rad/s2.

4. RESULTS AND DISCUSSION

4.1. APPEARANCE OF THE FIRST TAYLOR VORTICES

The basic #ow in the present system is three-dimensional. The #ow structure depends on the
apex angle, gap width, angular velocity and axial position, as reported by Wimmer (1995).
In addition to the tangential and radial motions, the meridional or axial #ow in#uences the
hydrodynamics of this system. In a cross-section of the gap width, the meridional motion is
upward along the wall of the rotating inner cone, and downward along the wall of the "xed
outer cone.
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On increasing the angular velocity of the inner cone from rest, with a constant acceler-
ation rate b, the balance between the centrifugal and viscous forces is lost at the "rst critical
Reynolds number Re

c
. The instability due to the centrifugal e!ect is maximal at the largest

radii and leads to the occurrence of the "rst Taylor vortex near the top of the #ow system
observed experimentally at Re

c
"132.

The "rst observed vortex has a radially inward #ow along the end plate, i.e., counter-
rotating to the meridional #ow. As an illustration of this #ow state, the simulation in Figure 4
shows the formation of the "rst single vortex at Re

c
near the top of the #ow system, while the
Figure 4. Numerical simulation for the appearance of the "rst vortex for b"0)09 and Re"134.
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rest of the #uid follows the meriodional motion. As can be seen, in the lower part, the
velocity of the meriodional #ow motion is higher near the rotating inner cone wall than in
the vicinity of the stationary outer cone wall.

Increasing further the angular velocity of the inner cone, more vortices are generated, one
below the other. The second vortex rotates in the direction opposite to the "rst one, following
the rotation sense of the meridional #ow as, seen in the simulation of Figure 5(b). The region
separating the second vortex from the meriodional #ow in the cross-section of the gap is not
clear, since the second vortex and the meriodional #ow rotate in the same sense. This
property cannot be observed experimentally, owing to the very slow secondary motion. As
can be seen in Figure 5(b), this separation region is considerably wide. The region where the
Figure 5. Numerical simulations of the generation sequences for the "rst vortices at b"0)09:
(a) Re"142, (b) Re"150, (c) Re"158 and (d) Re"166.



Figure 6. Laser sheet visualization of the "rst vortices for b"0)12: (a) Re"170, (b) Re"182 and
(c) Re"190.
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#uid layers coming from the second vortex and the meridional motion merge can be
regarded as a dead zone since the secondary motion is very weak.

All the generated vortices are horizontal and counter-rotating, two by two from the top.
The numerical simulation results of Figure 5 clearly represent the generation sequence of
these vortices. In the simulations, b is kept constant while the Reynolds number is slowly
increased above the critical value. The laser sheet visualization displayed in Figure 6 also
clearly shows the sequence of the generation of the "rst vortices. As can be seen in Figure 6(c),
in the gap, the top vortices already have a strong motion represented by dark zones,
whereas new vortices generated below in the lower part have weak motions identi"ed as
lighter zones. In the same "gure, it is seen that the sizes of the vortices vary axially along the
#uid column.

4.2. UPWARD TRAVELLING VORTICES

Increasing further the angular velocity of the inner cone, at Re"193, three-quarters of the
#uid column is "lled with vortices, as observed experimentally. At this stage, the vortices,
still horizontal, begin to move upwards heading for the largest radius. This motion is due to
the strong meridional motion at the bottom of the system where the #ow is still basic.

At Re"209, the whole #uid column is "lled with upwards travelling vortices as more
vortices appear in the residual-free lower part. A periodic phenomenon is observed as a new
vortex is generated periodically at the bottom of the #uid column. This vortex travels
upward, until it disappears, crashing on the uppermost top vortex which remains with
a strong vorticity.

Experimentally, the velocity c of this upward motion is evaluated based on the elapsed
time between the birth of a vortex at the bottom and its disappearance at the top of the #ow



Figure 7. Velocity of the upward motion versus Reynolds number for di!erent b: j, b"0)3; d,
b"0)5.
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system. As shown in Figure 7, this velocity decreases linearly with a slope of 0)014 when the
Reynolds number increases. It should also be noted that the upward motion does not
depend on the acceleration rate b. Finally, the upward motion stops and steady Taylor
vortices are then observed at Re"320. As will be described in Section 4.3, depending on the
value of b, vortex modes with six, seven or eight pairs of vortices are observed in the #uid
column in the "nal state.

4.3. STEADY TOROIDAL VORTICES

The "nal state is reached after the upward motion stops and steady horizontal toroidal
vortices are established in the #ow system. This steady state is nonunique and depends on
the acceleration rate b. Con"gurations of six, seven or eight pairs of vortices can be
observed, depending on the history leading up to the steady #ow state. The nonuniqueness
of the #ow modes has been discussed by some authors in the case of circular rotating
cylinders (Coles 1965; Burkhalter & Koschmieder 1974) and in the case of rotating conical
cylinders (Wimmer 1995). In Figures 8)1, 8)2 and 8)3, the con"gurations of six, seven and
eight pairs of vortices are con"rmed both numerically and experimentally. The numerical
simulations [Figures 8)1(b), 8)2(d) and 8)3(f )] show the same axial disposition of the steady
vortices as observed in the three modes for the corresponding experimental conditions. The
size of the vortices decreases from the bottom to the top of the #ow system. The vortices are
coupled as a pair of large and small counter-rotating vortices. As also noticed from the three
photographs presented in Figures 8)1(a), 8)2(c) and 8)3(e), in all the observed steady states
the sizes of the large and small cells even vary from one axial position to the other. The
vortex at the bottom of the #ow system is larger than the one at the top. It has been
con"rmed by numerical simulations that it is the large vortices which rotate in the same
sense as the meriodional #ow. The small vortices are counter-rotating to the meriodinal
#ow with a vorticity weaker than that of the larger vortices.



Figure 8.1. Con"guration of six pairs of steady vortices (b"0)6, Re"340): (a) #ow visualization;
(b) numerical simulation.

Figure 8.2. Con"guration of seven pairs of steady vortices (b"1)3, Re"520): (c) #ow visualiz-
ation; (d) numerical simulation.

doi:10.1006/j#s.2001.0417
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For the case of six pairs of Taylor vortices, a time sequence of the evolution from the birth
of the "rst vortices to the "nal steady state obtained by numerical simulations is shown in
Figure 9(a}d). The steady state, Figure 9(d), is reached after the calculation time q*"q for
a Reynolds number Re"373 and an acceleration rate b"0)8. The "rst sequence, Figure 9(a),
corresponds to a calculation time of q/30 and represents the appearance of the "rst vortices.
At q*"q/20 [Figure 9(b)], more vortices are formed gradually. The transient state,
Figure 9(c), obtained for q*"q/15 has 13 cells, and the dimensions of the vortices are
smaller than in the steady state [Figure 9(d)]. This state, obtained numerically, is transient
due to the existence of an odd number of vortices. Only in the upward-motion #ow-state
can the same number of cells be seen, because of the axial movement. The "nal steady state
[Figure 9(d)] has 12 vortices, similar to what is observed experimentally as stated with
regard to Figure 8.1.

Since the vortices are di!erent in size axially, i.e., the wavelength varies along the #uid
column, the de"nition of the wavelength is quite delicate. As the vortices are formed axially
alternately large and small, the wavelength can be de"ned classically, based on a vortex
pair: the wavelength j is then the axial length occupied by a pair of adjacent large and small
counter-rotating vortices. The mid-point of an imaginary line joining the vortex centers is
taken as the axial location for both numerical and experimental observations. In Figure 10,
the nondimensional axial wavelengths j*, de"ned by j*"j/¸, are displayed for di!erent
axial locations. The "rst pair of vortices is formed by the large vortex at the bottom and the
next upper small vortex. As noticed in Figure 10, for the six-pair and seven-pair modes, the
relative di!erence of size between experimental observations and numerical simulations lies
in the range 1}10%. In the case of eight pairs of vortices, the di!erence is between 3 and
30%. For the same experimental conditions, the simulations permitted to obtain a con"g-
uration with eight pairs of vortices. The di!erence in size is probably attributable to
numerical e!ects, since the calculation time is shorter than in the six-pair and the seven-pair
cases. That con"guration can only be obtained for high Reynolds numbers and high
acceleration rates will be discussed in the following section.

On the other hand, it is found, both numerically and experimentally, that the wavelength
decreases axially from the bottom to the top of the #ow system, except near the upper end
plate.

In the case of very small acceleration rates of the rotating inner cone, the di!erent #ow
modes observed can be mapped as in Figure 11. As stated earlier, the procedure
involves "rst "xing the "nal angular velocity to be reached and then accelerating,
linearly, the rotation of the inner cone from rest, with di!erent acceleration rates. All
the observed structures are con"ned in a limited number of speci"c regions depending
on Re and b. In Figure 11, the range of Reynolds number (3204Re4850) where the
steady toroidal vortices appear is not in regular square form. This hysteretic dependence is
clearly explained by Figure 12. Di!erent #ow modes appear within the regions of steady
vortex #ow.

It is apparent that the most preferred vortex con"guration within the present #ow system
is the TVF mode with seven pairs of vortices, occupying the widest region in Figure 12. At
a given Reynolds number, two di!erent steady-state con"gurations can be established,
depending on the acceleration rate. Two di!erent #ow modes having six and seven pairs of
vortices, respectively, are observed simultaneously at low Reynolds numbers. Although the
six-pair mode is observed for small b, the seven-pair mode occurs for greater b, for the
same Reynolds number. Two di!erent #ow modes, having seven and eight pairs of vortices,
respectively, are also observed simultaneously at higher Reynolds numbers. The eight-
pair mode is obtained for greater b than the seven-pair mode for the same Reynolds
number.



Figure 8.3. Con"guration of eight pairs of steady vortices (b"1)3, Re"730): (e) #ow visualization;
(f ) numerical simulation.

Figure 9. Time sequence transition to the steady state for Re"373 and b"0)8: (a) q*"q/30; (b)
q*"q/20; (c) q*"q/15 and (d) q*"q.
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Figure 10. Axial wavelength of the toroidal vortices in the axial direction z for both numerical and
experimental results.

Figure 11. Flow states mapping in the Re}b plane: m, upward motion; s, steady TVF; j, WVF.
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However, the three modes cannot coexist at a given Reynolds numbers. This mode
selection is shown in Figure 13. At some Reynolds numbers, where two modes coexist for
di!erent values of b, the jump from one con"guration to the other occurs at a critical value
of b. This critical value depends on the Reynolds number.



Figure 12. Flow regions of TVF and WVF in the Re}b plane: d, six pairs of steady vortices; s, six
pairs of wavy vortices; j, seven pairs of steady vortices; h, seven pairs of wavy vortices; m, eight pairs

of steady vortices; n, eight pairs of wavy vortices.

Figure 13. Mode selection as a function of b: r, Re"649; s, Re"428.
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4.4. WAVY VORTEX FLOW

In the range of Reynolds numbers investigated (Re(1000), it has also been found that
wavy-vortex #ow (WVF) appears for higher Reynolds numbers. As in the circular Couette
system, the WVF is characterized by the appearance of an azimuthal wave motion which is
superimposed on the steady cellular motion. The WVF observed in the present system has
the same characteristics as that observed between circular cylinders (Cognet 1984).

According to Figures 11 and 12, #ow with either steady vortices or wavy vortices is
observed, depending on b for the same Reynolds number. The mode with six pairs of wavy
vortices exists in a very narrow region, 5504Re4750 and b40)08. Two di!erent modes
having, respectively, seven pairs of wavy vortices and eight pairs of steady vortices are also
observed in the range 6504Re4750. Furthermore, in a small range (600(Re4750),
three modes can be observed for the same Reynolds number. In one case, three di!erent
modes, i.e., six pairs of WVF, seven pairs of TVF and eight pairs of TVF, occur at di!erent
b. In another case, another combination of #ow modes, i.e., six pairs of WVF, seven pairs of
WVF and eight pairs of TFV can also exist, depending on b. For higher Reynolds numbers,
Re'850, only seven or eight pairs of WVF are observed.

5. CONCLUSIONS

The present paper dealt with a qualitative and quantitative evaluation of the di!erent
conditions leading to the occurrence of Taylor vortices between coaxial conical cylinders.
The hydrodynamics of this #ow system may be considered to be singular, in the sense that
the steady Tayler vortex #ow (TVF) is established after an upward travelling motion of the
"rst observed vortices due to the basic three-dimensional #ow. Depending on the acceler-
ation rate b of the inner cone rotation, in the TVF state, three di!erent modes with six, seven
or eight pairs of vortices are obtained in the present #ow system.

The conditions of appearance of these #ow modes have successfully been summarized by
Re-b mapping. The Re-b #ow mode regions have no regular shapes since a combination of
#ow modes can coexist, even for the same Reynolds number, when b is changed. The
numerical simulations have con"rmed the various observed #ow modes for the same Re-b
experimental condition and gave complementary information about the transient #ow
structures before the steady state is reached.

Modes of Wavy Vortex Flow (WVF) have been obtained from the TVF when the
Reynolds number is further increased. Combinations of TVF and WVF modes also
coexist for the same Reynolds number for di!erent values of b. In this #ow system, the
selection of the #ow mode to be reached can be controlled by the choice of the acceleration
rate.
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